Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 586
Filtrar
1.
Clin Chim Acta ; : 119682, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643819

RESUMO

BACKGROUND: Human epididymis protein 4 (HE4) has been identified as a biomarker for renal fibrosis. This study aimed to evaluate the role of HE4 in the diagnosis and determination of disease severity and hepatic fibrosis in autoimmune hepatitis (AIH). METHODS: Serum HE4 levels were determined via electrochemiluminescence immunoassays in 60 healthy controls and 109 AIH patients (43 without liver cirrhosis and 66 with liver cirrhosis). Liver biopsy was performed on 56 of 109 enrolled patients. We conducted a 5-year follow-up survey of 53 enrolled patients. All continuous variables were reported as median (25th-75th percentile). RESULTS: Serum HE4 levels were significantly elevated in autoimmune hepatitis with liver cirrhosis (AIH-LC) patients compared with AIH patients and healthy controls [98.60 (74.15-139.08) vs 73.50 (59.88-82.00) vs 48.75 (43.38-52.93) pmol/L, p = 0.004]. The serum HE4 levels showed a positive correlation with the METAVIR scoring system in patients with liver biopsy (r = 0.711, p < 0.001). Serum HE4 levels were significantly elevated in Child-Pugh class C patients compared with Child-Pugh class B patients and Child-Pugh class A patients [106.50 (83.46-151.25) vs 110.00 (73.83-166.75) vs 77.03 (72.35-83.33) pmol/L, p = 0.006]. The diagnostic sensitivity and specificity of serum HE4 for evaluating liver cirrhosis were 69.7 % and 79.07 %, respectively, with a cutoff value of 82.34 pmol/L in enrolled patients. The logistic regression analysis showed that high levels of HE4 (≥82.34 pmol/L) were associated with AIH-LC (OR = 8.751, 95 % CI = 1.412-54.225, p = 0.020). The Kaplan-Meier curves demonstrated that high levels of serum HE4 (≥82.34 pmol/L) were associated with poor outcome (log-rank p = 0.037, HR = 0.372, 95 % CI = 0.146-0.946). CONCLUSIONS: Serum HE4 levels were found to be elevated in AIH-LC patients and exhibited a strong correlation with the severity of hepatic fibrosis, thus supporting their potential clinical value as a novel biomarker of disease severity and hepatic fibrosis in AIH.

2.
Int J Biol Macromol ; : 131682, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643914

RESUMO

This study aimed to prepare a new bio-based chromium-free tanning agent. The green epoxide monocase ethylene glycol diglycidyl ether (EGDE) was grafted with tannic acid (TA) derived from natural plant using the one-pot method to synthesize new plant polyphenol-derived tannic acid-based chromium-free tanning agents (TA-EGDE) with abundant terminal epoxides. FTIR, 1H NMR, XPS, GPC, SEM, and other analytical techniques were used to characterize tanning agents. These consequences manifested that EGDE was successfully grafted with the phenol hydroxyl group of TA. The epoxide value of TA-EGDE showed a tendency to increase and then decrease with increasing EGDE dosage, and the epoxide value of TA-EGDE-2 attained a maximum of 0.262 mol/100 g. GPC analysis showed that the formula weight of the prepared TA-EGDE was partially distributed above 5000 Da. The tanning experiment demonstrated that the shrinkage temperatures (Ts) of the TA-EGDE-tanned leathers were all higher than 81.5 °C. Compared with the traditional commercial chromium-free tanning agent (F-90, TWS), TA-EGDE-tanned leathers exhibited higher Ts and better mechanical properties. The TA-EGDE prepared in this study not only has ecological environmental protection but also provides finished leather with good moisture, heat resistance, and mechanical properties.

3.
Am J Ophthalmol ; 262: 237-245, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38452920

RESUMO

PURPOSE: To investigate the relationship between effective lens position (ELP) and patient characteristics, and to further develop a new intraocular lens (IOL) calculation formula for cataract patients with previous pars plana vitrectomy (PPV). DESIGN: Cross-sectional study. METHODS: A total of 2793 age-related cataract patients (group 1) and 915 post-PPV cataract patients (group 2) who underwent phacoemulsification with IOL implantation were included. The ELP of 2 groups was compared and the association between ELP and patient characteristics was further evaluated using standardized multivariate regression coefficients. An ensemble artificial intelligence-based ELP prediction model was developed using a training set of 810 vitrectomized eyes, and a thick-lens IOL formula (LISA-PPV) was constructed and compared with 7 existing formulas on an external multi-center testing set of 105 eyes. RESULTS: Compared to eyes with age-related cataract, vitrectomized eyes showed a similar ELP distribution (P = .19), but different standardized coefficients of preoperative biometry for ELP. The standardized coefficients also varied with the type of vitreous tamponade, history of scleral buckling, and ciliary sulcus IOL implantation. The LISA-PPV formula showed the lowest mean and median absolute prediction error (MAE: 0.63 D; MedAE: 0.44 D), and the highest percentages of eyes within ±0.5 D of prediction error (57.14%) in the testing dataset. CONCLUSIONS: The ELP prediction required optimization specifically for vitrectomized eyes based on their biometric and surgical characteristics. The LISA-PPV formula is a useful and accurate tool for determining IOL power in cataract patients with previous PPV (available at http://ppv-iolcalculator.com/).

4.
J Hazard Mater ; 467: 133735, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335620

RESUMO

Cu2+ contamination and food spoilage raise food and drinking water safety issues, posing a serious threat to human health. Besides, Cu2+ and H2S levels indicate excess Cu2+-caused diseases and protein-containing food spoilage. Herein, a coumarin-containing bifunctional paper-based fluorescent platform integrated with a straightforward smartphone color recognition app is developed by an all-in-one strategy. The proposed fluorescent materials can simultaneously detect Cu2+ and H2S for on-demand food and drinking water safety monitoring at home. Specifically, a coumarin-derived fluorescence sensor (referred to as CMIA) with a low detection limit (0.430 µM) and high-selectivity/-sensitivity for Cu2+ is synthesized through a simple one-step route and then loaded onto commercially used cellulose fiber filter paper to engineer a biomass-based fluorescent material (CMIA-FP). The CMIA-FP offers user-friendly, high-precision, fast-responsive, and real-time visual monitoring of Cu2+. Moreover, CMIA forms a chemically stable complex with Cu2+, loaded onto filter paper to prepare another biomass-based fluorescent platform (CMIA-CU-FP) for visual real-time monitoring of H2S. Based on the exquisite composition design, the proposed dual-function paper-based fluorescent materials equipped with a smartphone color recognition program concurrently realize fast, accurate, and easy real-time monitoring of Cu2+ in drinking water and H2S in chicken breast-/shrimp-spoilage, demonstrating an effective detection strategy for the Cu2+ and H2S monitoring and presenting the new type of biomass-based platforms for concentrated reflection of drinking water and food safety.


Assuntos
Água Potável , Humanos , Alimentos Marinhos , Biomassa , Celulose , Corantes , Cumarínicos
5.
Cell Death Differ ; 31(4): 511-523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365969

RESUMO

The aberrant expression of methyltransferase Set7/9 plays a role in various diseases. However, the contribution of Set7/9 in ischemic stroke remains unclear. Here, we show ischemic injury results in a rapid elevation of Set7/9, which is accompanied by the downregulation of Sirt5, a deacetylase reported to protect against injury. Proteomic analysis identifies the decrease of chromobox homolog 1 (Cbx1) in knockdown Set7/9 neurons. Mechanistically, Set7/9 promotes the binding of Cbx1 to H3K9me2/3 and forms a transcription repressor complex at the Sirt5 promoter, ultimately repressing Sirt5 transcription. Thus, the deacetylation of Sirt5 substrate, glutaminase, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, is decreased, promoting glutaminase expression and triggering excitotoxicity. Blocking Set7/9 eliminates H3K9me2/3 from the Sirt5 promoter and normalizes Sirt5 expression and Set7/9 knockout efficiently ameliorates brain ischemic injury by reducing the accumulation of ammonia and glutamate in a Sirt5-dependent manner. Collectively, the Set7/9-Sirt5 axis may be a promising epigenetic therapeutic target.


Assuntos
Isquemia Encefálica , Glutamina , Histona-Lisina N-Metiltransferase , Sirtuínas , Sirtuínas/metabolismo , Sirtuínas/genética , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Glutamina/metabolismo , Camundongos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Humanos , Regiões Promotoras Genéticas/genética , Neurônios/metabolismo
6.
FEBS J ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390745

RESUMO

Glaucoma, an irreversible blinding eye disease, is currently unclear whose pathological mechanism is. This study investigated how transient receptor potential cation channel subfamily V member 1 (TRPV1), 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (PLCγ1), and P2X purinoceptor 7 (P2X7) modulate the levels of intracellular calcium ions (Ca2+ ) and adenosine triphosphate (ATP) in Müller cells and retinal ganglion cells (RGCs) under conditions of elevated intraocular pressure (IOP). Müller cells were maintained at hydrostatic pressure (HP). TRPV1- and PLCG1-silenced Müller cells and P2X7-silenced RGCs were constructed by transfection with short interfering RNA (siRNAs). RGCs were cultured with the conditioned media of Müller cells under HP. A mouse model of chronic ocular hypertension (COH) was established and used to investigate the role of TRPV1 in RGCs in vivo. Müller cells and RGCs were analyzed by ATP release assays, intracellular calcium assays, CCK-8 assays, EdU (5-ethynyl-2'-deoxyuridine) staining, TUNEL staining, flow cytometry, and transmission electron microscopy. In vivo changes in inner retinal function were evaluated by hematoxylin and eosin (H&E) staining and TUNEL staining. Western blot analyses were performed to measure the levels of related proteins. Our data showed that HP increased the levels of ATP and Ca2+ influx in Müller cells, and those increases were accompanied by the upregulation of TRPV1 and p-PLCγ1 expression. Suppression of TRPV1 or PLCG1 expression in Müller cells significantly decreased the ATP levels and intracellular Ca2+ accumulation induced by HP. Knockdown of TRPV1, PLCG1, or P2X7 significantly decreased apoptosis and autophagy in RGCs cultured in the conditioned media of HP-treated Müller cells. Moreover, TRPV1 silencing decreased RGC apoptosis and autophagy in the in vivo model of COH. Collectively, inhibition of TRPV1/PLCγ1 and P2X7 expression may be a useful therapeutic strategy for managing RGC death in glaucoma.

7.
Adv Sci (Weinh) ; 11(11): e2307369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38196276

RESUMO

Implantable bioelectronic devices (IBDs) have gained attention for their capacity to conformably detect physiological and pathological signals and further provide internal therapy. However, traditional power sources integrated into these IBDs possess intricate limitations such as bulkiness, rigidity, and biotoxicity. Recently, artificial "tissue batteries" (ATBs) have diffusely developed as artificial power sources for IBDs manufacturing, enabling comprehensive biological-activity monitoring, diagnosis, and therapy. ATBs are on-demand and designed to accommodate the soft and confining curved placement space of organisms, minimizing interface discrepancies, and providing ample power for clinical applications. This review presents the near-term advancements in ATBs, with a focus on their miniaturization, flexibility, biodegradability, and power density. Furthermore, it delves into material-screening, structural-design, and energy density across three distinct categories of TBs, distinguished by power supply strategies. These types encompass innovative energy storage devices (chemical batteries and supercapacitors), power conversion devices that harness power from human-body (biofuel cells, thermoelectric nanogenerators, bio-potential devices, piezoelectric harvesters, and triboelectric devices), and energy transfer devices that receive and utilize external energy (radiofrequency-ultrasound energy harvesters, ultrasound-induced energy harvesters, and photovoltaic devices). Ultimately, future challenges and prospects emphasize ATBs with the indispensability of bio-safety, flexibility, and high-volume energy density as crucial components in long-term implantable bioelectronic devices.


Assuntos
Biomimética , Fontes de Energia Elétrica , Humanos , Próteses e Implantes , Fenômenos Físicos , Miniaturização
8.
PLoS One ; 19(1): e0292444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165961

RESUMO

Nodes in the structural hole position play a key role in the multi-project network of the open source community (OSC). This paper studies the robustness of this network based on structural hole theory. First, a semantic-based multi-project KCN is constructed, and four node types are identified: knowledge contribution nodes, knowledge dissemination nodes, structural hole nodes (SHNs) and opinion leader nodes. Second, a robustness analysis model of the edge failures of these four key nodes is constructed. Third, a simulation test is conducted on the proposed model using empirical data from the Local Motors multi-project OSC. The results show that the KCN has the lowest robustness when facing the edge failure of opinion leader nodes, followed by knowledge dissemination nodes, knowledge contribution nodes, SHNs and random nodes. The edge failure of opinion leader nodes causes the lowest network robustness because of the propagation effect of these nodes. Additionally, SHN failure has only a small initial impact on connectivity, whereas knowledge collaboration efficiency decreases rapidly (i.e., the edge failure of SHNs causes the network to enter a state of high connectivity and low efficiency). The proposed model can be used to provide comprehensive and targeted management guidance for OSC development.

9.
Cell Mol Life Sci ; 81(1): 62, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280036

RESUMO

Endothelial injury and dysfunction in the artery wall fuel the process of atherosclerosis. As a key epigenetic regulator, Ash2l (Absent, small, or homeotic-Like 2) is involved in regulating vascular injury and its complications. However, the role of Ash2l in atherosclerosis has not yet been fully elucidated. Here, we found increased Ash2l expression in high-cholesterol diet-fed ApoE-/- mice and oxidized LDL (oxLDL) treated endothelial cells (ECs). Furthermore, Ash2l promoted the scavenger receptors transcription by catalyzing histone H3 lysine 4 (H3K4) trimethylation at the promoter region of transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) and triggered the activation of the pro-inflammatory nuclear factor-kappa B (NF-κB) by enhancing interaction between CD36 and toll-like receptor 4 (TLR4). Meanwhile, enhanced expression of scavenger receptors drove more oxLDL uptake by ECs. In vivo studies revealed that ECs-specific Ash2l knockdown reduced atherosclerotic lesion formation and promoted fibrous cap stability in the aorta of ApoE-/- mice, which was partly associated with a reduced endothelial activation by suppressing scavenger receptors and the uptake of lipids by ECs. Collectively, our findings identify Ash2l as a novel regulator that mediates endothelial injury and atherosclerosis. Targeting Ash2l may provide valuable insights for developing novel therapeutic candidates for atherosclerosis.


Assuntos
Aterosclerose , Células Endoteliais , Camundongos , Animais , Células Endoteliais/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Aterosclerose/metabolismo , NF-kappa B/metabolismo , Receptores Depuradores/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
10.
Eur J Med Chem ; 266: 116126, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232464

RESUMO

Due to their structural diversities and prevalent biological activities, natural products (NPs) are momentous resources for drug discovery. Although NPs have a wide range of biological activities, many exhibit structural complexity that leads to synthetic difficulties, which combines with inefficient biological activity, toxicity, and unfavorable pharmacokinetic characteristics and ultimately imparts poor safety and efficacy outcomes. Progress in crystallization and computational techniques allow crystallography to have a seasonable influences on drug discovery. By co-crystallizing with proteins, therapeutic targets of NPs in specific diseases can be identified. By analyzing the co-crystal information, the structure-activity relationships (SARs) of NPs targeting specific proteins can be grasped. Under the guidance of co-crystal information, directional structural modification and simplification are powerful strategies for overcoming limitations of NPs, improving the success rate of NP-based drug discovery, and obtaining NP-based drugs with high selectivity, low toxicity and favorable pharmacokinetic characteristics. Here, we review the co-crystal information of a selection of NPs, focusing on the SARs of NPs reflected by co-crystal information and the modification and simplification strategies of NPs, and discuss how to apply co-crystal information in the optimization of NP-based lead compound.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Descoberta de Drogas/métodos , Relação Estrutura-Atividade , Cristalografia
11.
Acta Pharmacol Sin ; 45(3): 558-569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37903897

RESUMO

Endothelial dysfunction is a common complication of diabetes mellitus (DM) and contributes to the high incidence and mortality of cardiovascular and cerebrovascular diseases. Aberrant epigenetic regulation under diabetic conditions, including histone modifications, DNA methylation, and non-coding RNAs (ncRNAs) play key roles in the initiation and progression of diabetic vascular complications. ASH2L, a H3K4me3 regulator, triggers genetic transcription, which is critical for physiological and pathogenic processes. In this study we investigated the role of ASH2L in mediating diabetic endothelial dysfunction. We showed that ASH2L expression was significantly elevated in vascular tissues from diabetic db/db mice and in rat aortic endothelial cells (RAECs) treated with high glucose medium (11 and 22 mM). Knockdown of ASH2L in RAECs markedly inhibited the deteriorating effects of high glucose, characterized by reduced oxidative stress and inflammatory responses. Deletion of endothelial ASH2L in db/db mice by injection of an adeno-associated virus (AAV)-endothelial specific system carrying shRNA against Ash2l (AAV-shAsh2l) restored the impaired endothelium-dependent relaxations, and ameliorated DM-induced vascular dysfunction. We revealed that ASH2L expression activated reductase STEAP4 transcription in vitro and in vivo, which consequently elevated Cu(I) transportation into ECs by the copper transporter CTR1. Excess copper produced by STEAP4-mediated copper uptake triggered oxidative stress and inflammatory responses, resulting in endothelial dysfunction. Our results demonstrate that hyperglycemia triggered ASH2L-STEAP4 axis contributes to diabetic endothelial dysfunction by modulating copper uptake into ECs and highlight the therapeutic potential of blocking the endothelial ASH2L in the pathogenesis of diabetic vascular complications.


Assuntos
Diabetes Mellitus , Angiopatias Diabéticas , Ratos , Camundongos , Animais , Cobre/metabolismo , Cobre/farmacologia , Regulação para Cima , Células Endoteliais/metabolismo , Epigênese Genética , Células Cultivadas , Angiopatias Diabéticas/etiologia , Glucose/metabolismo , Endotélio Vascular
12.
Acta Biomater ; 174: 386-399, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016511

RESUMO

Immune cells distinguish cancer cells mainly relying on their membrane-membrane communication. The major challenge of cancer vaccines exists in difficult identification of cancer neoantigens and poor understanding over immune recognition mechanisms against cancer cells, particularly the combination among multiple antigens and the cooperation between antigens and immune-associated proteins. We exploit cancer cell membranes as the whole cancer antigen repertoire and reinforce its immunogenicity by cellular engineering to modulate the cytomembrane's immune-associated functions. This study reports a vaccine platform based on radiation-engineered cancer cells, of which the membrane HSP70 protein as the immune chaperon/traitor is endogenously upregulated. The resulting positive influences are shown to cover immunogenic steps occurring in antigen-presenting cells, including the uptake and the cross-presentation of the cancer antigens, thus amplifying cancer-specific immunogenicity. Membrane vaccines offer chances to introduce desired metal ions through membrane-metal complexation. Using Mn2+ ion as the costimulatory interferon genes agonist, immune activity is enhanced to further boost adaptive cancer immunogenicity. Results have evidenced that this artificially engineered membrane vaccine with favorable bio-safety could considerably reduce tumorigenicity and inhibit tumor growth. This study provides a universally applicable and facilely available cancer vaccine platform by artificial engineering of cancer cells to inherit and amplify the natural merits of cancer cell membranes. STATEMENT OF SIGNIFICANCE: The major challenge of cancer vaccines exists in difficult identification of cancer neoantigens and poor understanding over immune recognition mechanisms against cancer cells, particularly the combination among multiple antigens and the cooperation between antigens and immune-associated proteins. Cancer cell membrane presents superior advantages as the whole cancer antigen repertoire, including the reported and the unidentified antigens, but its immunogenicity is far from satisfactory. Cellular engineering approaches offer chances to endogenously modulate the immune-associated functions of cell membranes. Such a reinforced vaccine based on the engineered cancer cell membranes matches better the natural immune recognition pathway than the conventional vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Neoplasias/prevenção & controle , Células Apresentadoras de Antígenos , Antígenos de Neoplasias , Membrana Celular
13.
Transl Res ; 264: 85-96, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37879562

RESUMO

Diabetic nephropathy (DN) is one of the complications of diabetes. Long-term hyperglycemia in the kidney results in renal insufficiency, and eventually leads to end-stage renal disease. Epigenetic factor ASH2L has long been identified as a transcriptional activator, and we previously indicated that ASH2L aggravated fibrosis and inflammation in high glucose-induced glomerular mesangial cells, but the pathophysiological relevance and the mechanism of ASH2L-mediated H3K4me3 in DN is not well understood. Here we demonstrated that ASH2L is upregulated in glomeruli isolated from db/db mice. Loss of ASH2L protected glomerular injury caused by hyperglycemia, as evidenced by reduced albuminuria, preserved structure, decreased glomerular extracellular matrix deposition, and lowered renal glomerular expression of proinflammatory and profibrotic markers in db/db mice. Furthermore, we demonstrated that enrichment of ASH2L-mediated H3K4me3 on the promoter regions of ADAM17 and HIPK2 triggered their transcription, leading to aberrant activation of Notch1 signaling pathway, thereby contributing to fibrosis and inflammation in DN. The findings of this study provide compelling evidence for targeting ASH2L as a potential therapeutic strategy to prevent or slow down the progression of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Histonas , Hiperglicemia , Animais , Camundongos , Diabetes Mellitus/patologia , Nefropatias Diabéticas/tratamento farmacológico , Fibrose , Hiperglicemia/metabolismo , Inflamação/patologia , Rim/patologia
14.
Nano Lett ; 24(1): 130-139, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150297

RESUMO

Photothermal immunotherapy has become a promising strategy for tumor treatment. However, the intrinsic drawbacks like light instability, poor immunoadjuvant effect, and poor accumulation of conventional inorganic or organic photothermal agents limit their further applications. Based on the superior carrying capacity and active tumor targeting property of living bacteria, an immunoadjuvant-intensified and engineered tumor-targeting bacterium was constructed to achieve effective photothermal immunotherapy. Specifically, immunoadjuvant imiquimod (R837)-loaded thermosensitive liposomes (R837@TSL) were covalently decorated onto Rhodobacter sphaeroides (R.S) to obtain nanoimmunoadjuvant-armed bacteria (R.S-R837@TSL). The intrinsic photothermal property of R.S combined R837@TSL to achieve in situ near-infrared (NIR) laser-controlled release of R837. Meanwhile, tumor immunogenic cell death (ICD) caused by photothermal effect of R.S-R837@TSL, synergizes with released immunoadjuvants to promote maturation of dendritic cells (DCs), which enhance cytotoxic T lymphocytes (CTLs) infiltration for further tumor eradication. The photosynthetic bacteria armed with immunoadjuvant-loaded liposomes provide a strategy for immunoadjuvant-enhanced cancer photothermal immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Rhodobacter sphaeroides , Humanos , Adjuvantes Imunológicos , Lipossomos , Imiquimode , Neoplasias/patologia , Imunoterapia , Linhagem Celular Tumoral , Fototerapia
15.
Fitoterapia ; 173: 105788, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38141880

RESUMO

As our ongoing searching for the bioactive natural terpenoids, nine ent-kauranoids (1-9), including three previously undescribed ones (1, 2, and 9), were isolated from the aerial parts of Isodon amethystoides. Their structures were elucidated on the basis of spectroscopic data analysis, including NMR, MS, and ECD. Compounds 1 and 2 were a pair of tautomeric compounds, which was confirmed by the HPLC analysis and low temperature NMR testing. The underlying mechanism of the tautomer was proposed as an intramolecular SN2 reaction, which was explained by quantum chemical calculation. The HOMO-LUMO gap and the free energy revealed the spontaneous of the tautomeric of the 1 and 2. Additionally, the similar phenomena were also found in the two groups of known compounds 3 and 4 and 6 and 7, respectively. Apart from the tautomer, compounds 3 and 4 can be hydrolyzed into 5 through ester hydrolysis in CDCl3, while compounds 6, 7 can be hydrolyzed into 8 through ester hydrolysis. These phenomena were also confirmed through HPLC analysis and low temperature nuclear magnetic resonance tests and the mechanism was studied using quantum chemical calculation.


Assuntos
Antineoplásicos Fitogênicos , Diterpenos do Tipo Caurano , Isodon , Estrutura Molecular , Isodon/química , Componentes Aéreos da Planta/química , Ésteres , Ensaios de Seleção de Medicamentos Antitumorais
16.
ACS Nano ; 17(24): 24947-24960, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38055727

RESUMO

Cancer vaccines have been considered to be an alternative therapeutic strategy for tumor therapy in the past decade. However, the popularity and efficacy of cancer vaccines were hampered by tumor antigen heterogeneity and the impaired function of cross-presentation in the tumor-infiltrating dendritic cells (TIDCs). To overcome these challenges, we engineered an in situ nanovaccine (named as TPOP) based on lipid metabolism-regulating and innate immune-stimulated nanoparticles. TPOP could capture tumor antigens and induce specific recognition by TIDCs to be taken up. Meanwhile, TPOP could manipulate TIDC lipid metabolism and inhibit de novo synthesis of fatty acids, thus improving the ability of TIDCs to cross-present by reducing their lipid accumulation. Significantly, intratumoral injection of TPOP combined with pretreatment with doxorubicin showed a considerable therapeutic effect in the subcutaneous mouse colorectal cancer model and melanoma model. Moreover, in combination with immune checkpoint inhibitors, such TPOP could markedly inhibit the growth of distant tumors by systemic antitumor immune responses. This work provides a safe and promising strategy for improving the function of immune cells by manipulating their metabolism and activating the immune system effectively for in situ cancer vaccines.


Assuntos
Vacinas Anticâncer , Melanoma , Nanopartículas , Neoplasias , Camundongos , Animais , Células Dendríticas , Metabolismo dos Lipídeos , Imunoterapia , Neoplasias/tratamento farmacológico , Melanoma/tratamento farmacológico , Antígenos de Neoplasias/metabolismo , Modelos Animais de Doenças
17.
Medicine (Baltimore) ; 102(49): e36348, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065870

RESUMO

Dry eye disease is one of the most common eye diseases. Clinical studies have found that meibomian gland expression can effectively improve the function of meibomian glands in patients with meibomian gland dysfunction. Compared with traditional appointments, Internet appointment has advantages in treating dry eye disease. A cross-sectional study was conducted to collect 300 patients with dry eye disease through an online questionnaire. Using Pearson chi-squared test, associations between the clinical parameters and appointment mode were analyzed. Spearman-rho test was executed to compare clinical data and appointment mode for correlation analysis and relationship between score of advantages of Internet booking (SOAIB), evaluation of the effectiveness of the Internet booking (EEIB), waiting in line for medical treatment (WMT). Univariate logistic regression analysis calculated the odds ratio (OR) of appointment mode for potential correlation factors. By using Pearson chi-squared test, SOAIB (P = .005), EEIB (P = .029) and WMT (P = .041) was significantly correlated with the appointment mode. Spearman correlation coefficient displayed that appointment mode was significantly correlated with EEIB (ρ = -0.126, P = .029) and WMT (ρ = 0.118, P = .041). Univariate logistic regression and concludes that EEIB (OR = 0.183, 95%CI: 0.033-1.004, P = .05), WMT (OR = 2.543, 95%CI: 1.013-6.384, P = .047) have a clear correlation with appointment mode. Spearman correlation coefficient displayed that SOAIB was significantly correlated with EEIB (ρ = -0.247, P < .001) and WMT (ρ = 0.157, P = .006). Internet appointment can effectively reduce the waiting time for dry eye disease treatment by meibomian gland expression. Effectiveness evaluation of Internet appointments is significantly higher than traditional appointments.


Assuntos
Síndromes do Olho Seco , Disfunção da Glândula Tarsal , Serviços de Enfermagem , Humanos , Estudos Transversais , Síndromes do Olho Seco/terapia , Glândulas Tarsais
18.
Micromachines (Basel) ; 14(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38138313

RESUMO

The zinc-tin-oxide (ZTO) thin-film transistor (TFT) is one of the most promising candidates for advanced display applications, though its popularity is limited by its performances. In this work, a heterojunction channel strategy was adopted to regulate the electron transport behaviors and the TFT performances by manipulating the concentration and the distribution of oxygen vacancies, and a reasonable physical model was proposed based on experimental and simulation results. It is difficult to mediate the contradiction between mobility and threshold voltage for the single channel. Via a heterojunction channel strategy, desirable TFT performances, with mobility of 12.5 cm2/Vs, threshold voltage of 1.2 V and Ion/Ioff of 3 × 109, are achieved when the oxygen-vacancy-enriched layer gets close to the gate insulator (GI). The enhanced performances can be mainly attributed to the formation of two-dimensional electron gas (2DEG), the insensitive potential barrier and the reasonable distribution of oxygen vacancy. On the contrary, when the oxygen-vacancy-enriched layer stays away from GI, all the main performances degenerate due to the vulnerable potential well. The findings may facilitate the development and application of heterojunction channels for improving the performances of electronic devices.

19.
Mol Cell ; 83(22): 4000-4016.e6, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37935198

RESUMO

While 19S proteasome regulatory particle (RP) inhibition is a promising new avenue for treating bortezomib-resistant myeloma, the anti-tumor impact of inhibiting 19S RP component PSMD14 could not be explained by a selective inhibition of proteasomal activity. Here, we report that PSMD14 interacts with NSD2 on chromatin, independent of 19S RP. Functionally, PSMD14 acts as a histone H2AK119 deubiquitinase, facilitating NSD2-directed H3K36 dimethylation. Integrative genomic and epigenomic analyses revealed the functional coordination of PSMD14 and NSD2 in transcriptional activation of target genes (e.g., RELA) linked to myelomagenesis. Reciprocally, RELA transactivates PSMD14, forming a PSMD14/NSD2-RELA positive feedback loop. Remarkably, PSMD14 inhibitors enhance bortezomib sensitivity and fosters anti-myeloma synergy. PSMD14 expression is elevated in myeloma and inversely correlated with overall survival. Our study uncovers an unappreciated function of PSMD14 as an epigenetic regulator and a myeloma driver, supporting the pursuit of PSMD14 as a therapeutic target to overcome the treatment limitation of myeloma.


Assuntos
Histonas , Mieloma Múltiplo , Humanos , Histonas/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Bortezomib/farmacologia , Bortezomib/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/metabolismo , Inibidores de Proteassoma/farmacologia , Transativadores/metabolismo
20.
Oncogene ; 42(50): 3684-3697, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37903896

RESUMO

Regulator of chromosome condensation domain-containing protein 1 (RCCD1), previously reported as a partner of histone H3K36 demethylase KDM8 involved in chromosome segregation, has been identified as a potential driver for breast cancer in a recent transcriptome-wide association study. We report here that, unexpectedly, RCCD1 is also localized in mitochondria. We show that RCCD1 resides in the mitochondrial matrix, where it interacts with the mitochondrial contact site/cristae organizing system (MICOS) and mitochondrial DNA (mtDNA) to regulate mtDNA transcription, oxidative phosphorylation, and the production of reactive oxygen species. Interestingly, RCCD1 is upregulated under hypoxic conditions, leading to decreased generation of reactive oxygen species and alleviated apoptosis favoring cancer cell survival. We show that RCCD1 promotes breast cancer cell proliferation in vitro and accelerates breast tumor growth in vivo. Indeed, RCCD1 is overexpressed in breast carcinomas, and its level of expression is associated with aggressive breast cancer phenotypes and poor patient survival. Our study reveals an additional dimension of RCCD1 functionality in regulating mitochondrial homeostasis, whose dysregulation inflicts pathologic states such as breast cancer.


Assuntos
Neoplasias da Mama , Mitocôndrias , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Neoplasias da Mama/patologia , Hipóxia/metabolismo , Carcinogênese/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Histona Desmetilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...